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Abstract 
Industrial processes usually involve a large 

number of variables, many of which vary in a correlated 
manner. To identify a p e s s  model which has 
correlated variables, an ordinary least squares approach 
demonstrates ill-conditioned problem and the resulting 
model is sensitive to changes in sampled data. In this 
paper, a recursive partial least squares (PLS) 
regression is used for on-line system identification and 
circumventing the ill-conditioned problem. The partial 
least squares method is used to remove the correlation 
by projecting the original variable space to an 
orthogonal latent space. Application of the proposed 
algorithm to a chemical process modeling problem is 
discussed. 

1 Introduction 
The partial least squares (PLS) regression has been 
widely applied to chemometrics and chemical industries 
for static data analysis (Lindberg, et al., 1983; Wold, et 
al. 1984, Geladi & Kowalski, 1986, Fuller, et al., 1988; 
Haaland, et al., 1988: Martens & Naes, 1989; Piovoso, 
et al, 1992). Inspired from principal component 
analysis (PCA) and principal component regression 
(PCR), the PLS regression is able to give a robust 
solution in the case of collinear or correlated input 
variables, where the ordinary least squares regression 
gives rise to the ill-conditioned problem (Wold, 1966). 
The PLS regression removes correlation in the input 
variables by carrying out orthogonal projections from 
input space to a latent space. Linear regression is then 
done in the latent space, which makes the regression 
solution well-defined (Geladi & Kowalski, 1986). 

The PLS regression has a number of 
orthogonal properties (HWuldsson, 1988). Owing to 
these properties, the PIS regression has been used for 
dynamic chemical process modeling and control 
(Ricker, 1988; Wise et al., 1990; MacGregor, et al., 
1991). Ricker (1988) applied the PLS regression for 

finite impulse response modeling and related a special 
case of PLS regression to singular value decomposition. 
Wise, et al. (1990) have demonstrated some properties 
of the PLS regression far dynamic modeling. Ljung 
(1991) addressed the point of using PLS and PCA for 
dynamic system identification. When a system 
identification method based on an ordinary least 
squares method is used to identify such a p e s s  with 
correlated inputs, one will have an ill-conditioned 
problem and the resulting model may not be reliable. 
The PLS regression is particularly useful in chemical 
w e s s  modeling because a chemical process usually 
has a large dimension of input Variables, many of which 
undergo slow changes in a correlated manner. 

In most of the PLS applications to date, the 
PLS regression is used as a batch type of identification 
approach, In other words, the data are collected and 
stored in a computer at first, then the PLS regression is 
carried out to model the data. This approach has a 
number of limitations: (i) the resulting model is hard to 
update to track possible changes of process dynamics: 
and (ii) when the data base is large in size, it may 
present memory problems for computers. In this paper, 
a recursive PLS regression proposed by Helland, et al. 
(1991) is modified to formulate a recursive PLS 
algorithm for dynamic system identification. Several 
benefits can be achieved using the recursive PZS 
method. First, the recursive PLS method updates the 
model when a new sample is available. Second, the 
recursive PLS method is able to adapt process 
correlation structure changes as well as process 
dynamics changes. If some variables were not 
correlated before but are correlated at present for some 
reasons, the recursive PLS method can pick up the 
changes. Third, the recursive PLS method can compress 
the data and get rid of potential memory problems. 

The organization of the paper is as follows. 
Section one addresses the need for a recursive PLS 
identification method. Section two discusses the batch 
type PLS method and its use in dynamic modeling. 
Section three presents how to use the PLS method for 
recursive identification. Section four addresses 
application of the recursive PLS algorithm to a catalytic 
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reformer in which correlated inputs exist. The final 
section gives conclusions. 

2 PLS Method for Dynamic Modeling 

2.1 Jlynamic Process Modeling 
A dynamic chemical process is usually 

governed by a set of nonlinear differential equations. 
Since the process data can be collected only at sampling 
instances, the process models are usually described in a 
discrete form. A simple stochastic model is the so- 
called auto-regressive model with exogenous inputs 
(ARX, Ljung, 1987), 

i=l j-1 

where y ( k ) ,  u(k) and v(k) are the process output, 
input, and noise vectors, respectively, with appropriate 
dimensions for multi-input-multi-output systems. Ai 
and Bj are matrices of model coefficients to be 
identified. n, and n, are time lags for the output and 
input, respectively. In order for the PLS method to build 
an ARX model, the following vector of variables is 
defined, 
XT(k)=[yT(k-l),yT(k-2) ,..., (2) 
yT (k - "JUT( k - l),UT (k - 2),. .. ,UT (k - nu)] 

whose dimension is denoted as m. Then two data 
matrices can be formulated as follows assuming the 
number of data records is n, 

x = [x(l),x(2>, ..., x ( n ) l T  E 91nxm 
Y = [y(l),y(2) ...., Y(n)lT E wxp 

(3) 
(4) 

where p is the dimension of output vector y(k). 
Defining all unknown parameters in the ARX model as, 

Eqn. 1 can be re-written as 

and the two data matrices Y and X can be related as 

An ordinary least squares solution to C is given by 

Assuming that the noise v(k) has zero mean and 
covariance as 

where I, is the identity matrix, the covariance of the 
least squares estimates is 

C =[A, ,A 2,...,Any,B,,B2,...,B,]T E Smxp (5)  

y(k)=CTx(k)+v(k) (6) 

Y = X C + V  (7) 

c, = (XTX)-'XTY (8) 

Cov(v(k) ,v(k))  = 021 ,  (9) 

Cov(C,,C,) = (XTx)-'o2 (10) 

Therefore, if the process inputs or outputs are exactly 
collinear, the least squares solution is singular. Even if 
the process variables are not exactly collinear but the 
data covariance matrix XTX has a large condition 
number, the resulting least squares estimate will have 
large variance and thus is not reliable. 

In many process control applications such as 
dynamic matrix control (Cutler, et al, 1979), a finite 
impulse response (FIR) model is often more convenient, 
which can be described as 

(1 1) N 
y(k) = xBju(k - j )  + v(k) 

j=l  

where N is the time lag which corresponds to the 
process settling time. Similar to the ARX model, two 
data matrices X and Y can be arranged according to the 
above equation. A least squares solution can be found 
for the FIR model if it is not ill-conditioned. However, 
if the process input variables are correlated, an ordinary 
least squares solution will also result in large variance 
in the estimate. 

2.2 PLS*Regression 
Here the PLS regression method is briefly 

discussed so as to establish a background for presenting 
the neural net PLS method. If the process variables are 
collinear, the PLS method overcomes the ill- 
conditioned problem by decomposing matrices X and Y 
into bilinear relations plus residual matrices 

X =  t,pr+El (12) 
Y = u,qr + F, (13) 

where t, and U ,  are latent score vectors of the first 
PLS factor, and p, and q1 are corresponding loading 
vectors. All four vectors are determined such that the 
residuals E, and Fl are minimized. The PLS 
decomposition is very similar to calculating the first 
principal components for X and Y, but PLS does the 
calculation such that the correlation between X and Y is 
emphasized (Geladi and Kowalski, 1986). The above 
two equations formulate a PLS outer model. After the 
outer calculation, the score vectors are related by a 
linear inner model: 

where b, is a coefficient which is determined by 
minimizing the residual rI. After going through the 
above calculation, the second factor is calculated by 
decomposing the residuals E, and F, using the same 
procedure as for the first factor. This procedure is 
repeated until the last factor a is calculated, which 
leaves almost no information in the residual matrices 
E,, and Fh. The overall PLS algorithm is summarized 
below according to Geladi and Kowalski (1986). Note 

(14) U, = bitl + rl 
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that a minor difference of this algorithm from the one 
in Geladi and Kowalski (1986) is that the latent 
variables th is normalized instead of wh and ph. This 
modification makes the presentation of a recursive PLS 
regression algorithm easier. 
1. Scale X and Y to zero-mean and unit-variance, or 

otherwise specified with particular scaling factors. 
Initialize E,:= X, F,:= Y, and h:= 0. 

2. Let h:= h + 1 and take uh as some column of 

3. Calculate PLS outer model: 
Fh-l * 

wh = E i - l u h ~ l E E - l u h ~  (15) 

q h  = Fl-,th/JJFl-lth[ (17) 
t h  = Eh-Iwh (16) 

uh = Fh-lqh (18) 
Iterate this step until it converges or until the 

Calculate the X-loadings and normalize latent 
maximum number of iterations is reached. 
4. 

vector t h  ? 

Ph = E ~ - l t h / t ~ t h  (19) 
wh:= Wh /Ithi (20) 

th:= t h  / I th l l  (21) 

bh = u;th /tit, (22) 

Eh = Eh-]- thp; (23) 

Fh = Fh-l - bhthqh T 

5. Find the inner model: 

6. Calculate the residuals: 

(24) 
7. Return to Step 2 until all principal factors are 

calculated. 
It should be noted that different versions of the 

PLS algorithm can be found and they are essentially 
equivalent (Manne, 1987). A useful feature of the PLS 
algorithm is that the loading vectors wh,qh and the 
latent score vectors th,uh are eigenvectors of 

and Fh-lFl-lEh-,Ei-l, respectively. More interestingly, 
the latent vectors. th(h = 1,2 ,..., a) ,  are orthogonal 
(Htiskuldsson; 1988). The total number of factors 
needed is usually determined by cross-validation 
(Geladi and Kowalski, 1986), although elsewhere an F- 
test is suggested (Haaland, et al, 1988). The cross- 
validation method is used to avoid over-fitting the 
training data. A typical way of doing cross-validation is 
to leave one or several samples out at a time, and then 
train the model with the remaining data. After training, 
the model is tested on the samples which are not used in 
training. This procedure is repeated until every sample 
has been left out once. Summing up all the lest errors 
over each factor, which is known as the predicted sum 
of squares (PRESS) error, the optimal number of 

Ei-]Fh-lFl-lEh-] 9 F~-lEh-IE~-lFh-I 9 Eh-]Ei-]Fh-lFl-l I 

factors is chosen as the location of the minimum of 
PRESS errors. One can see that the cross-validation 
method can be quite laborious, but it is useful in 
determining the number of factors. More details of the 
method can be found in Stone (1978) and Geladi and 
Kowalski (1986). 

It can be shown that the PLS algorithm is a 
particular way of doing multiple linear regression 
which has robust prediction properties. If the number of 
factors is chosen as the number of input variables, the 
PLS method is equivalent to ordinary least squares. As 
a matter of fact, the PLS technique is widely applied, 
even when the data are not highly correlated. The 
recent work of Stone and Brooks (1990) shows that 
ordinary least squares, partial least squares and 
principal component regression are simply three 
particular cases of what is called continuum regression. 

3 Recursive PLS Regression 
In this section, the recursive PLS regression 

algorithm in Helland, et al. (1991) is modified for 
dynamic system identification. To illustrate the 
recursive updating of the PIS parameters, the number 
of samples n is explicitly used as a subscription in later 
derivation. By putting the PLS vectors into matrix 
forms, Eqns.23 and 24 can be rewritten as follows, 

X, = T,,P,T (25) 

Y,, = T,,B,Q: + F,, (26) 
where 

T,, =[t,,t,,...,t,I 

Pn = [PI , P Z * * . * ~ P ~  1 
B,, = diugib,, 9,. . . , b,, 1 
Qn = [ql r q 2  ,...,qmI 

Since the number of factors is equal to the number of 
input dimensions, m, the residual matrix for X,, is 
vanished, as indicated in Eqn.25. However, the residual 
matrix F,, is generally not zero because of measurement 
noise. If the covariance matrix X;X, is singular, a least 
squares solution is ill-conditioned. By minimizing the 
output residuals using least squares criterion, the 
following relation can be derived, 

Since columns of T,, are mutually orthonormal, the 
following relation can be derived through Qns. 25 and 
26, 

( XzXn = XTYn (27) 

xtx, = P,T,TT,,P,T = P,,P,’ (28) 
(29) 

The fact that the residual matrix F,, is orthogonal to X, 
in least squares regression is used to derive Eqn.29. 
Substituting the above relations into Eqn.27, one gets, 

XrY, = XzT,,B,Qz + XZF,, = P,,B,,Qz 

(PnP,’ )CO = PnBnQ: (30) 
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If the covariance matrix XTX is singular, PnP,' is also 
singular. Therefore, a generalized inverse is given in 
the PLS regression to find the coefficient matrix: 

where (o)+ denotes the generalized inverse defined 
through the PLS regression algorithm. 

When a new sample at n + 1 is available, an 
updated estimate needs to be found using the 
augmented data matrices: 

c ; ~  = (P,,P,')+P,B,,Q; (3 1) 

x;+l = rx; x(n +1)1 (32) 
q + 1  = [Y,' Y (n + 1>1 (33) 

Therefore, the PLS regression at n + 1 can be updated 
as 

c:: = ~ ~ : + , ~ * J + ~ ~ + I ~ ~ l  (34) 
=(p,pmr +Y(n + i ~ ( ~ +  ~ ) ) + ( P ~ B ~ Q ;  + ~ ( n + i ) ~ ~ ( n + ~ ~  

=([P, X(rl+l)][P" x(n+l)]r)+[P" x(n+1)1 

W,Q, ~ ( n  + Illr 
By comparing the above equation with 

one gets, 

and 

Hence, one can find matrix Pn+l by solving Eqn.36 and 
find B,+,Q~+, through Eqn.37. By using the fact that 
columns of Qn+l are normalized, B,+l and Qn+l can 
be found separately. Then all other vectors can be 
calculated through the relations in the PLS regression 
algorithm. 

Although the aforementioned approach is a 
recursive algorithm, finding P,+l and Bn+lQL+l can be 
quite laborious. Instead of going through this algorithm, 
one can find the PLS update by simply carrying out PLS 
regression for matrices [P, x ( n  +1)f and 
[B,Q, y( !z + 1)IT through the PLS algorithm given in 
Eqns. 15-24. Therefore, assuming the PLS model at I I  is 
known, the PLS model at n + 1 can be derived based on 
P,,B,,Q,, and new data x(n+l) ,y(n+l ) .  One does 
not have to deal with the data before n + 1, because all 
the information is compressed in the PLS parameters. 

Assuming the PLS algorithm is carried out 
through Eqns. 15-24, the regression coefficient can be 
compounded as follows, 

where 

and 

C% = (Pn+1','+1 )+Pn+lBn+lQZ++1 (35) 

P,+,P,'+, = P,P,'+x(n+I)xT(n+l) (36) 

Pn+lBn+lQT++l = P,,B,Q; + x ( n  + 1)yT(n + 1) (37) 

C l S  = K+1Bn+lQ;+;+I (38) 

w;+1 =[w1 ,w*,....w; I (39) * *  

i-1 (40) 

h=l 

The above derivation can be found in Htlskoldsson 
(1988) and Qin, et al. (1992). 

It should be noted that in the previous 
derivation of the recursive PLS algorithm, the number 
of PLS factors is chosen as the dimension of the input 
vector. However, to make a prediction, the number of 
factors is usually less than the dimension of the input 
vector, x ( k ) .  Therefore, in using the recursive PLS 
algorithm, the PLS regression can be carried out 
through all factors. When used for prediction, the PLS 
model is truncated at the best number of factors, which 
can be determined by cross-validation or F-test 
validation. In practice, the number of factors can vary, 
as the process may change through time. For example, 
when some variables were correlated before, but are not 
correlated at present, an increase on the number of 
factors is expected. 

4 Application to a Chemical Process 
A process model is usually needed in advanced 

process control such as dynamic matrix control. The 
process model can be derived through first principles 
modeling, but system identification is often used 
because the first principles models are hard to find for 
many chemical processes. Figure 1 illustrates a catalytic 
reforming system in petroleum refineries. A typical 
catalytic reformer is composed of a number of reactors, 
heaters, and a fractioner. The catalytic performer 
usually performs four major reactions: (i) 
dehydrogenation of naphthenes to aromatics; (ii) 
dehydrocyclization of paraffin to aromatics; (iii) 
isomerization; and (iv) hydrocracking. It is usually hard 
to derive a mathematical model for such a chemical 
process. Further, many process variables are involved in 
this reforming system and many of these variables 
correlate to one another. Therefore, this process is a 
good candidate for applying PLS regression to derive a 
dynamic model. 

The objective of the application is to derive a 
process model to predict important quality variables so 
as to implement better control. The process data can be 
collected from distributed control systems on-line. In 
this study, however, the data were collected before hand 
from five input variables and two output variables to 
test the PLS algorithm. About two thirds of the data are 
used for modeling, the other third are used for testing. 
An ARX model structure can be used to describe the 
process. A preliminary modeling result is shown in 
Figure 2, where the two process outputs are compared 
with the model prediction. The number of factors used 
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in this model is seven, which is determined from cross- 
validation. 

After a dynamic process model is derived, it 
can be used in dynamic matrix control to predict the 
process outputs (Cutler, et al., 1979). Another way of 
using this model is for supervisory control. The 
predicted future outputs can be used as a guideline for 
the human operators to adjust set points for low level 
controllers. The supervisory control approach is useful 
when the predict process variables are directly related 
product quality. As new data are available along process 
operation, the process model can be updated using 
recursive PLS regression in a real-time manner. Slow 
process changes during operation will be captured in 
the model using this approach. 

5 Conclusions 
A recursive partial least squares regression 

approach is presented in this paper for dynamic system 
identification. If a system to be identified has correlated 
inputs, ordinary least squares methods are ill-defined 
and cannot give a robust process model. The PLS 
regression circumvents the correlation problem by 
projecting to a latent space in which the latent vectors 
are orthogonal. Application of the recursive PLS 
regression includes identification of chemical processes 
and refineries. 
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Figure 1. The process flow diagram of a catalytic 
reforming system. 
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Figure 2. Prediction of the two process outputs of a 
catalytic reformer using partial least squares regression. 
Solid line: measurement: dotted line: prediction. 
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